
MODEL-BASED TEST DESIGN
AND AUTOMATION

GREGORY SOLOVEY
TEST ARCHITECT

MARK FIRTH
GLOBAL HEAD OF TESTING SERVICES

01 INTRODUCTION 03

02 “IT HURTS WHEN I PRESS HERE” 04

03 “THAT’S A RELIEF!” 07

04 “INVEST IN YOUR HEALTH” 14

05 ABOUT ENDAVA 16

CONTENTS

03MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

There are a number of reasons why testing is an imperative

part of product design and delivery. While some may be

obvious, for example it ensures customer or user satisfaction

which is increasingly important and the focus shifts to deliver

excellent experiences to satisfy customer expectations, it

is important not to overlook the equally important business

benefits of saving money, ensuring security and delivering the

promised value through product quality.

The fact is that the business will expect your products to be

perfect, or as close to perfect as possible. This cannot be

achieved easily, but test automation offers some solutions

to a number of testing challenges, namely, how to guarantee

test completeness and how to maximise return on investment

(ROI) from test projects.

Endava is routinely selected as a partner of choice to

assure success in test automation and deliver robust

solutions that solve client’s business challenges and

unlock new business value. We base our approach on a

collaborative conversation with our clients about their

goals and challenges and leverage our expertise to

identify and deliver a solution.

01

INTRODUCTION

We wanted to share one of our responses to testing
challenges we see on a regular basis, so that it might help
you to improve your test automation.

04MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

02

IT HURTS WHEN I
PRESS HERE

The perception of pain is subjective, and for testing, it
is dependent on differences in organisational culture,
automation skills, and ways of working.

A challenge described by a client does not always point to

the true source of the problem. The same symptom can have

many different causes.

05MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

The approach to identify and
fix isolated problems does
not guarantee the absence of
additional, masked problems.
Just like in medicine, instead
of just treating the symptoms,
the best approach is to bring
testing to a healthy state
and then continually monitor
its effectiveness to drive
additional improvements.

02. "IT HURTS WHEN I PRESS HERE"

For example, the source of a bug found in production could

be the result of a multitude of different scenarios, including:

•	 The testing of a new feature was not complete;

•	 The regression tests were manual and were not run

	 completely for the latest build;

•	 Testing was not executed in all production environments 	

	 (e.g. browsers and mobile devices);

•	 Performance testing was run on unrepresentative data or 	

	 on a non-production-like environment.

Equally, the source of missed milestones or slow test

execution could be traced to:

•	 Unrealistic expectations and planning;

•	 Poor testing practices;

•	 A shortage of skilled personnel.

 Endava delivers
 a complete and
 comprehensive solution,
 instead of a quick patch
 for particular problems.

02. "IT HURTS WHEN I PRESS HERE"

07MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

03

THAT’S A RELIEF

When implemented effectively, test automation has the

potential to yield significant ROI due to the replacement

of time consuming, and sometimes unreliable and non-

repeatable, manual testing. Currently, 85% of companies

report that they are using test automation (State_of_testing_
report), but at the same time, the average automation

coverage is only 20% (broken-promise-test-automation).

Test automation often fails or does not provide the expected

ROI due to maintenance issues, stemming from a lack of

appropriate skills and experience.

The first paragraph in Leo Tolstoy’s “Anna Karenina” states:

“Happy families are all alike; every unhappy family is

unhappy in its own way.” To paraphrase it: Successful test
projects are all alike; but every unsuccessful test project fails
in its own unique way.

Endava uses a model-based test design and automation

approach - a comprehensive solution to build and automate

tests in an efficient and maintainable fashion. This approach

enables automation in parallel with development and makes

tests traceable to the system architecture and requirements.

This model-based test design and automation flow is

presented in the picture below and the descriptions of each

view follow >

 Successful test projects are
 all alike; every unsuccessful
 test project fails in its own
 unique way.

http://qablog.practitest.com/wp-content/uploads/2017/03/State_of_testing_2017_final_report.pdf
http://qablog.practitest.com/wp-content/uploads/2017/03/State_of_testing_2017_final_report.pdf
https://sdtimes.com/legacy-software/broken-promise-test-automation/

08MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

03. "THAT’S A RELIEF!"

Figure 1 – Endava Model-based test design and automation flow results

Specifications: architecture, interfaces

Abstraction: hierarchy of structural models

Architecture View

Specifications: behavior, requirements

Abstraction: hierarchy of behavior models

Business View Development View

Test stack:	 Test suite layer

			 Test scenario layer

			 Test case layer

Test Model View

Capability

Feature

User Story

Acceptance Criteria

Tool stack:	 Test framework layer > test language, business keyword libraries

			 Test accelerators layer > access keyword libraries

Test Tool View Development View

SW configuration, build, test environment,

result monitoring

Data Access View – system under test

UI, API, messaging system, DB

09MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

The technical capabilities the test automation framework

must exhibit are driven by the Architecture of the system

to be tested (Architecture View). For example, if we want to

execute test flows through a web GUI, API and database,

we need a framework which is capable of interacting with

those interfaces and supporting tests which interact with

multiple types of entry and validation points.

The technologies behind the interfaces help us to identify

the tools which will be included in the test automation

framework e.g. Selenium for UI testing, Java or .NET

libraries for API and database testing.

When creating an automated test suite, rather than
simply translating manual tests into automated tests on a
one-to-one basis, it is more efficient to step back and define
the desired application behaviour and the existing system
architecture and use these to drive how the test automation
is structured.

03. "THAT’S A RELIEF!"

The Business View is a system presentation which describes

the behaviour, responsibilities and data structures for each

element of the Architecture View. On an abstract level it is

organised as a hierarchy of behaviour models.

The Test Model View presents the hierarchy of test

artefacts that are built to verify the business model’s

implementation. Model-based test design uses proven test

design methodologies (test design methods), which illustrate

how to build the minimum number of tests, to maximise test

coverage and to improve test completeness and traceability.

This approach assumes that each architecture element/

requirement is presented as a formal model (an expression,

an algorithm, a state machine, etc.), and then known

methods to build test cases are used to make the test design

a straightforward, routine process that enables us to build

complex testware within days.

https://drive.google.com/file/d/1PDROVyVwtDfVIYDhAgTOjuYn5Q9lfaa-/view

010MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

03. "THAT’S A RELIEF!"

Model-based test design presents the tests as a set of

abstract layers. This enables the separation of the business

logic from the implementation details and, as a result,

makes the automation process more efficient, decreases

maintenance costs, increases test reliability and the

reusability of test objects. The test stack includes the

following layers:

•	 Test suite layer - splits tests according to the system’s

	 architectural structure and/or functional behaviour.

•	 Test scenario layer - presents the behaviour (functionality)

	 of an architectural element, an application, a service, a

	 module, etc.

•	 Test case layer - defines the test case format: set-up,

	 execution, result comparison, and tear down sections.

The Test Tool View presents test frameworks and underlying

test automation tools. Test Frameworks (such as Robot

Framework, Cucumber, SpecFlow, Junit, NUnit, TestNG) offer

a “language” to represent the test hierarchy and libraries of

keywords to communicate with test tools. Test tools (such as

Selenium, JMeter, SoapUI) and Java or .NET libraries support

the communication with a variety of interfaces (Web, GUI,

API, messaging, DB) to send stimuli and capture results.

The test hierarchy from the Test Model View will be

presented by Framework language. Thus, the same test

presented at the business level can be performed on

different browsers and devices using different access

keyword libraries. In addition, various testing tools can

execute the same test presented at the business level.

03. "THAT’S A RELIEF!"

The Development View represents the transformation of the

Architecture/Business views into development artefacts,

such as capabilities, features, epics, user stories and their

acceptance criteria for Agile models, or specifications and

designs in a waterfall model.

The release/feature planning phase typically starts as soon

as high-level Architecture and Requirements documents

are created (Core Practices for Agile/Lean Documentation).

Those are decomposed and refined into user-stories and

their respective acceptance criteria. In many traditional Agile

implementations, tests are only created at the user-story

level. This can lead to a “fragmented” test pack, where

the big-picture view of the system is lost. The model-based
approach delivers high-level tests for each Architecture and
Requirements document. Tests are refined along with the
decomposition of architecture and requirements.

http://agilemodeling.com/essays/agileDocumentationBestPractices.htm#RecognizeYouNeedSomeDocumentation

012MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

03. "THAT’S A RELIEF!"

The Release View represents the result of the transformation

of the development work items (from the product backlog)

into release artefacts.

The code related to a user-story is moved through the CI/CD

pipeline – included in a particular build, tested in particular

environments, deployed to a particular release.

The Data Access View presents the variety of the system

interfaces.

013MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

TEST EXECUTION:

the fact that the test structure is

mapped to the system structure allows

testers to selectively execute test suites

according to the modules that were

touched in the latest build. Such an

approach can dramatically decrease the
time to test, and as a consequence,
the delivery time.

03. "THAT’S A RELIEF!"

ADDITIONAL BENEFITS:

There are also additional benefits, such

as improved testability, end-to-end

traceability and the ability to focus test

execution coverage.

MAINTENANCE AND EXTENSION:

business and access “action words”

are defined in libraries, and therefore,

any single code change leads to a
single testware update in a library.
This makes test maintenance

straightforward.

DEBUGGING:

the structured test presentation makes
debugging simple, since the test and

log file formats are common. Each test

case is traced back to the respective

business scenario (a requirement) and

structural elements. It is clear from

the log file structure what the stimuli,

system response and expected results

were, and why a test case failed.

TEST AUTOMATION CREATION:

the test coding process is replaced by a test “declaration” process. In the majority of cases,

a tester isn’t required to use a programming language (Java, Python, C++, etc.), but instead

“declares” a test with a set of predefined business and access keywords, using the test

framework language. New objects or functionality can be incorporated by simply adding new

“action words.” This approach allows all testers to participate in test automation by reusing

“actions” from existing libraries.

Model-based test design and automation provide the following benefits:

014MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

04

INVEST IN YOUR
HEALTH
Test quality is about faster product delivery, minimised

defect escapes, increased quality, reduced test creation

effort, improved maintainability, good transparency and fast

feedback. While improving test automation may require

considerable upfront investment, this can be easily justified

by the ROI.

The benefits of model-based test design and automation

solutions include significant cost savings by replacing manual

effort, the reduction in maintenance costs due to the proper

organisation of the testware and production bug density

reduction, that can yield between 40% - 80% in savings

(reduction in defect density).

IBM estimates that a bug costs $100 to fix during the

“gathering requirements” phase, $1,500 in the QA testing

phase, and $10,000 in production (software-bug-cost).

Note:
This paper focuses on just one approach to implementing

comprehensive testing. This is not the only test-related

solution we use, other solutions include continuous

improvement, shift left, architecture testability principles,

quality and progress monitoring, test data generation, test as

a service, built-in self-test, etc.

 The investment in Endava test
 automation solutions will yield
 visible results in just a few
 weeks and the full investment
 will be rapidly recouped.

https://www.computer.org/csdl/magazine/so/2007/03/s3024/13rRUygT7kK
https://crossbrowsertesting.com/blog/development/software-bug-cost/

015MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

04. "INVEST IN YOUR HEALTH"

93% 	 reduction in test execution time
95% 	 cost reduction in generating environments

40% 	 performance improvement

98% 	 requests served in <0.4 seconds

70% 	 test coverage increase

78 	 different performance scenarios tested

4 	 years in production with no failures

8 	 performance tuning improvements found

20 	 commits per day

80% 	 performance gain

66% 	 reduction of team size

30 	 mins to run smoke test

100%	 license cost reduction
8 	 automated scenarios / day

Figure 2 – Endava Model-based test design and automation benchmarks

016MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

Endava is reimagining the relationship between people
and technology.

We accelerate our clients’ ability to take advantage of new

business models and market opportunities by ideating

and delivering dynamic platforms and intelligent digital

experiences that fuel the rapid, ongoing transformation of

their business.

By leveraging next-generation technologies, our agile,

multi-disciplinary teams provide a combination of Product

& Technology Strategies, Intelligent Experiences, and

World Class Engineering to help our clients become more

engaging, responsive, and efficient.

05

ABOUT ENDAVA

https://www.endava.com/

017MODEL-BASED TEST DESIGN AND AUTOMATIONendava.com

Want to know more? �
Email us.

AUTHORS

Gregory Solovey - Test Architect

Mark Firth - Global Head of Testing Services

Copyright Endava 2019. All rights reserved.

CONTACT US

mailto:contactus%40endava.com?subject=
https://twitter.com/endava?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/endava/
mailto:contactus%40endava.com?subject=
https://www.endava.com/

	Button 2:

